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ABSTRACT: We focus here on some very recent results and its studies. Our main contribution isto provide
some numerical and empirical facts concer ning spectral M easures and Spectral Families.

. INTRODUCTION

E. Kowalski [1] follows up on a standard course in Functional Analysis and builds on the principles of functional
analysis to discuss one of the must useful and widespread among its applications, the analysis, through spectral
theory, of linear operators T: H1 — H2 between Hilbert spaces. Roland Stromberg [2] discussed the the proofs of
the book “Functional analysis” given by Reed and Simon. Antoine jacquier studied numerical approach to spectral
risk measures.

Proposition 1: Let H be a complex Hilbert space, and E a spectral family on H. The following two conditions are
equivalent. (i) K1 =var2(E) < w and K2 =varp(E) < w;

(ii) Foreachx H,u PR,theseriesy 7 Ak x converges unconditionally, yniformly in u.

Lemma 1: Let 2 <p<oo and suppose that K = var, (E") <c0. Then

IIxll< K( z | A X [|P)P" for each xO H u OPx.

Proof. Let a> 0 and x O{ E(a)-E(-a) H and write & = —so that(x, &)= ||x||. Let ud Pgr. Then there exists some

N
N>1 such that x = Z A, X. Hence we have

IIXII= (: A X) = %(( AX)

lgN(é, Asz) _l}zN(A*k ¢,8X)

So, using Holder’s inequality in the last term we have

i< 1AX[P)™ ZIIA x* <P

[K[<
Hence

< KC S 118, 7)™ -(31)
Since U,.{ E(8)-E(-a)} H isdensein H, the last inequality holds for all xO H. For suppose not; then there exists x
0
OH and >0 such that || X - ZM AX|<—=,
-M 2

Then we have

0 . |:| |:| M M
AXIPYP +(==IxI-=<lIx|l-|x-5 A XIEIS A, x
(Z” XAP) (2 I x|l 2 I |- I % WXl ||% Xl
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' ad : O P ,
But || Z’\:/I A x| K(Z'\:,I AX|P)™" Hence we get (Z 1A X [P + P < (Z_oo”AkX IP)"* which

is a contradiction.

Proof of Proposition 3.1

Let us show (i)—=>(ii). Let K; = var;, (E) and K, = var, (E*). Using Lemma 3.1 with p=2 we have, for each x [JH and
u OPg,

1 hd 12 ad 2\1/2
E< Z”Akx 122 <] x [I< KZ(ZIIAKX ")

This shows that for each x OH and {A\} OPkg, z A, X converges unconditionally. To see this, let e0D” and [ 1>0.

Since { E(An)-E (A-n)}X> X as N> oo, we can find Ng>1 such that

o
( YA XI|P)Y> < — for al Ne<N<M. ..(32)
N<[k|<M K2
Then we have
I ZNDK AX|l< Ky( znAkx )% < for all NigN<M. ..(33)
K K==%

Hence i I ig Cauchy and so converges to some I,.[JH. Furthermore, (3.3) shows that the convergence is
uniform i_nmu, in the sense defined in the above Remark.
To show (ii) (i), suppose that, for each x  H, the series Z A, converges unconditionally, uniformly in u. So
there exists a constant My > 0 such that
I ka A X||£ M, forall ud Pg, e0D”.
But this means that all the balanced pal;t_i_a:lo sums are also bounded:
I %DK A X || M, foral K>1, ull Pg, e0D.
s .

To seethis, let usfix {Ek }. Define 0'y = 0" = Ok for |k|<Kand O' - 0" =1for
[k| > K . Then we have

2|| ;(Dk A=l ZDIkAkX [
=

k=—c0

I ZD'kAkX I+l z DA |=2M,.

k=-c0 k=-00
Hence we <can apply the Uniform Boundedness Principle to the collection of operators
{ZIkI<ka AXx:K=21,uOP;00OD"} to deduce the existence of a constant C>0 such that

Iy Ikl K DA, I C for all K21, uOPe and OOD™. Hence | zmek A X |l C||x || for all x OH.
k=—0c0
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So the operators Ag, = Zo_oka A, are uniformly bounded by C, i.e. the collection G = {A¢,: u OPx OO D%} is

bounded above by C. Observe that thisis an fact a well-defined Abelian group. For, let AY and AV correspond to

. . © (u) ) (v)
parturitions u and v OPg respectively, and let  Ag, = z_ka A, and A = Z—m o\, . Let we be the

o R— (W)
union of the points of u and v (so that if refines both). Now rewrite Ag, = Z—ijAk , where for each j, we

define [J;=0J,, with k being the unique integer for which A,(W)A, (u)#0. We can rewrite

A&,u = Z:} 5Aj(w) , in terms of w in an exactly analogous manner. Then the product of the two operators is

uniquely given by:
_< (w)
AuA = ZDJ 51AJ !

We now apply aresult of B. Sz. Nagy: there exists an inner product ( , ) on H , equivalent to the original ( , ), with
respect to which all A_ y are unitary. That is, there exist constants Cq and C2 such that

(Ac,ux Acuy) = (xy) fordl x,y H
C1(x,X) < (x,X)<Co(x,x) foralx H.
Now, for any partition u, the operators {Ak } are orthogonal with respect to this new inner product, in the sense that

Ak x, Aj x) = 0if k =]. To see this, let us fix a partition u and k = j. Choose D® such that j k =-1. Then,

using the unitary property, we have (A ylk X, Ay X) = Ak x, Ajx). But weasohave A yAix = jAjx for any i
Z so that

(A ubkX A udjx¥) = Kk jBKX LjX) =—(Ak X, Aj x).

Combining the last two equations we get (A X, 4jx) =—(Akx, Ajx) =0, asclaimed.

M
Now leta> Oandx {E(a)—- E(-a)}H.Sox= Z—M A, X for some M>1.

Then denoting the new norm by [IX|’y = { x, x),

(X, X) = (i A X, i AX) = i A X Pn)Y

Hence we have

M M
01% 12X IFn) <l x [P< 02% (i (3.4)

1 1
Butweaso have — || A X [P A X Pns — | A X |IP)Y?

C:2 Cl
Thisholdsforany x {E(a) ~ E(~a)}H , and any partition u. But Ua>0{E(a) = E(-a)}H isdenseinH , so (1) holds
foral x H . So, taking the supremum over u [OPR and x OBy in the left inequality, we deduce that var2(E) <

C,
C,

IC
Let us show the var2 (E*)<2 ||E||e EZ . Again, let & O{ E*(a)-E*(-a)} H for some fixed a>0 and let u 00 Pg. So
1

there existssome N>1 suchthat & = ZTNA* KE. Set z=A*il forl =N,......... N. Then we have for each i
1Az [FAL*Sis 2|l ||A* Sl

N
Now set z = Z_NAiZi.
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Then

Ak? =Ak?Kk fork=-N.,..N,
(z8%$) =(Bkz, ) = (z,,0%KS) =[| kS |2

C N 2\12
Now by () we have IIZIIS\/EZ(Z_NIIAKZII )" andaso |(z,$) i<zl 1< 1], sothat
1z )1, |(z.4)]

I
Izl JCZ(XTNnAkzu%”Z

[
But now we have from (+) and (3.5)
18z )< 2] Efleo( Y 1A% kg [%)*

K< K[
(Z,§)=gIIA*k§II2

Hence,

N

"

1< Ik ZCN
2 N

2| Euoo\/cl S

So we have

S

NS |P _ 1

- =
KL )2 20|E o | 2
C,

* C
Kig )" < 2||Elleo L
1

A*ké/ ”2)1/2

Thisholds for any £00U . { E* (3)-E*(-a)} H and any partition u 0Pg, so taking supreme we obtain.

var2(E*) < 2| E|| 001/% asrequired

This Proposition helps establish the main result of this chapter.

Theorem 1. Let E be a spectral family on a complex Hilbert space H . If both varp(E) = K1 < o and varp(E*) =
Ko < oo, then E givesrise to a spectral measure on B, the Borel g—algebra on R. That is there exists a spectral

measure E on B such that for any A=(a,b] R, ¢(A) ={E(b)- E(@)}.

Proof. Let us use the notation from the statement and proof of Proposition 3.1. We have shown therein that provided

124

...(35)

...(36)

varp(E) < o and varo(E ) < o, the operators Ae,U = z:Dk A, are well defined and bounded and moreover

the Abelian group
G ={A,, :u0P,0D%) isuniformly well bounded.

Now, by XV 6.1in [3.7], there exists an invertible self-adjoint S B(H ) such that for every Ag y

G, the operator

BEu= S_lAe,uS is unitary. Observe that, since A%, =1H, we have B%,, =1H = B, B'[J,u, so that each B[JU is

self-adjoint.

Now, observe that for any 4 R, E(n) G. To seethis, simply defineu PR to be Z, with the exception \g = p.

ThenchooseE D to bee =-1forj<0andeg =1forj> 0. Thenwe have Agy = 1- 2E(u) and hence

EG) =50 -A)

(37
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Now let F (p) = S_lE(p)S Thisis awell-defined spectral family in H and (3.7) givesF (u) = 1/2(I - Bg,u) so that
F isin fact self-adjoint. Let usnow writeHy ={F (n)— F(n-1}Hand xn ={F(n)—- F (h-1}xforx H.

0o

Then H is adirect-sum decomposition. H=[1H, . Let

T, = [ AdF (dH,
Then Tp, is abounded self-adjoint operator on Hp. Hence by the classical Spectral

n

Theorem there exists a spectral measure Fn on the Borel g-algebraB (n - 1, n] suchthat T, :J’ l/IFn (dA2) . Now
=

define an operator valued set function.

F(A)E_D Fn.(Aﬂ (n=1,n)) AOB(R)
First observe that F(A) is well-defined, since Fp(A n (n - 1, n) is a bounded operator from Hp into itself

and so F(A)x = =0 F.(AN(n-1),n])X, is well-defined. In fact, F defines a projection-valued measure, for it

satisfies the following three properties:
(i) F(R) = I;
(i) if A, B 0B(R) then F (An B)=F(A) F (B);

(i) if {Ak} B(R) isasequence of pairwise digoint sets, then for eachx H , F(Ux A)X = zoko:lF(A()X
(i) istriviadly true, as Fn((n - 1, n]) = IHp for al n. (ii) isequally easy. Forif A, B B(R),thenAn (n-1,n], B
n(n-1,n B (n-1,n]foreachn. So, Fn being a spectral measure, we have

F.(ANBM(n-1Ln]) =F (AN (n-1Ln])F, (BN (n-1n])

Hence

F(ANB)=0F,(ANBN(n-1n))

={0F,(AN(-LrDH{IF,(BN(n-1n])} -@9)
=FA) F (B)

(The equality in (3.8) isjust the definition of the product of direct-sum operators.) Finally, to check (iii), let { Ak}

B(R) be a sequence of digoint Borel sets, set A= | A, andletx H.Using orthogonality of the spaces Hp
k=1

we have
F(A)x,xC= M F,(AN(-LnDxx0= 3 F,(A N(n-1n])x, %, (39

Now, since each Fpy isaspectral measure on (n — 1, n], we have

EFn(Aﬂ(n—Ln])xn,x.ﬂ:2l F,(A N (=L)X, x,C

Moreover, for every n  Z, (Fn(-)xn, Xn) is a positive Borel measure. Hence we can swap the order of summation in
line (3.10) below.

F(AXXE S Z F, (A N (N=10])x,, %,

n=—o

:2{§ (A N (-1 n])x,x .(3.10)
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= > 00 (A N2, xC

221 [F (AX, XC

N
To put this another way, Iim[ﬂF(a)—ZlF(A()}X,XD=O. Now, the operation F(A) and
{Z:le(A)}N >1 are self adjoint, so by polarization we have
N
Iim[ﬂF(a)—ZlF(A()}x,xD=0 for al x, y O H.

Hence Z:le(A() x converges weakly and so strongly to F(A) x, and this establishes (iii). Thus F is a genuine

spectral measure.
Now, suppose, A = (a,b] isan interval such that n-1>a<n<b<n+1 for someinteger n 0 Z. Then F, (An (k-1, k])=0 if
k #n or n+1. Furthermore,

FANM-1) = Fn(@n) = [ o (DF,(d2)

= [ U (DAF (DH, ={F(n) - F @)}H,
Similarly F.,(AN(n,n+1)]) ={F(b) — F(n)}H,,,,and so writing somewhat clumsily,

F(A) :kiD_—toOHk D{F(n) - F(a)}Hn D{F(b) - F(n)}Hn+l |]l<:|§+20Hk

But this says precisely that F(A) = F(b) — F(a). In a similar manner we can show that F((c,d)]F(d)-F(c) for
any interval (c,d]. So we finally define
€(A) = SF(A)S1 for A0 B(R)
€(.) isthen awell defined spectral measure on B(R) and the last calculation shows that satisfies €(A) = {E (b)-E(a)}
for asubset A = (a,b] OR.
An Example of varg(E) =

Proposition 1 clearly shows that varo(E) < o and varp(E) < o is a very restrictive condition: it is equivalent to E

being a spectral measure. It is of interest, therefore, to establish that not all spectral families on a Hilbert space
exhibit this phenomenon. In fact, we can show more. Given any s = 2, there exists a Hilbert space H and a spectral

family E on H such that varg(E) = . To achieve this, we shall construct a conditional basic sequence {ex }k>1in L2
(T) and let H = lin{ex }. Then we shall define a spectral family Eandanx H , dependant on the given value of s,

such that for all sufficiently fine partitions UL P, zo_ow | A, X[+ = o0 . The search for a suitable conditional basic
sequence is motivated by [23], in particular the following theorem therein.

1. 1
Theorem 2: Let 0<b<1/2 and 1<p<co satisfy — > > —b.Let{a,},., be a positive monotonic decreasing sequence
p

such that Z:apk < 00, Then the series Z::oak(t)b cos kt convergesin L4(T).

It is necessary for our basic sequence to be bounded below, and the following Lemma ensures that is the case.
1
Lemma 2 Let 0<b<§ and define functions g, L[-7,7] by e(t) = [t|® cos kt for k >0. Then there exists a

constant M>0 such that ||e||.*>>My, for all k>0.
7T

Proof. For any k>0 we have ||e||*= J' |t ° cos’ kt dt = 2J;7t2b cos’ kt dit.
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Let us consider k>3. Let

| . = iD
0 13kEa
| =H2¥8lr (@+3D7k g k-2
H 3« 3K

1
Then U, |, 0[0,27] and on each |; we have cos’kt> — . Hence
o 4

k-2
le I = ZZJ t?° cos” kt dt
= i

1 k-2

ZE;L“ledt

1 k-2 1 @]4+ 3] |j+2b [2+ 3] |j+2b§

“2&1+»Hx B Hx H H
1 BZBJ' Ii{(4+3j)1+2b_(2+3j)1+2b}

" 21+ 20) (Bk O

Now, the function f(x) = (4+3x)**?®-(2+3x)**? isincreasing and concave on x>0 so that
k-2

Iok—z F()dx < Z{(4_'_31-)1+2b _(2+3j)1+2b}

Hence,
1 k-2

130 {(3k _ 2)2+2b _ (3k _ 4)2+2b _ 42+2b + 22+2b} < Z {(4 + 3j)1+2b _ (2 + 3j)1+2b}
Substituting thisinto (3.11) we have for k>3.

7Z'l+2b E(3k _ 2)2+2b _ (3k _ 4)2+2b _ 42+2b + 22+2b C
2(1+ 2b)(2+20b) O (3k)** E

Now the right hand side of thisinequality isincreasing ask — c. Moreover, at
k =3 theright sideisequal to

e IF=

7Z'l+2b D72+2b _52+2b _42+2b + 22+2b O
O +2b 0> 0
2(1+ 2b)(2+2b) 9 0
Thus, for we have
” ek ”2> 1+2b E72+2b _ 52+2b _ 42+2b + 22+2b Dfor Al
~ 2(1+20)(2+20) g+ 0 =

Further, we can let m = min { ||g?||: j=0,1,2} >0 and then set
7Z'1+2b E72+2b _ 52+2b _ 42+2b + 22+2b B
' 2(1+2b)(2+2b) O g2 0

Proposition 2: For any s = 2 there exists a Hilbert space H and a spectral family E{(\)}» R on H such that
varg(E) = .

M % =min{m
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Proof. Let PR n [~a, a] denote the set of partitions of R, restricted to the interval [~a, a]. As, before, if {E(\)} isa
spectral family and u = (uk )k Z PR, then {Ak } = {(E(uk )~ E(uk-1))} is the associated Schauder

Us —
decomposition. Then by definition, var S(E) supsup sup ( Z”AKXS ”) =00
uoR; a>0 uOPzMN[-a.a] K==

Therefore, given 2<s<eo, it will suffice to construct a spectral family E and x [0 H such that

sup (3 (1A )2 = o0

udPr K==
. 1
So, let s>2 be given. Choose — E <a<0 and s;>s such that

1 1 1 1
O<=+a<—<=<=
2 s S 2
Letex () = @ coskt LZ[~m, m] for k= 0. By Lemma 2 there exists a constant Mg > 0 such that lex [|L2 =

Mg for al k. Thisisa conditiona basic sequencein L2[—n, ] (see[1], so the space H = lin{ ek : k= 0} is a Hilbert
space.

Let{ak} Is; begivenbyap =1and ak = %for k>1. Now the basis {ex }, the sequence {ak }, and s1

satisfy the conditions of Theorem 3.2, so that the sirasz:akek converges in H. But we aso note that

o Us —
(Solac))s =e.
Now we are ready to construct the required spectral family onH. Let{ 4, }
be a monotone strictly increasing sequence with Ap=0 and Ak /2m. Let {€k } be the bi-orthogonal functionals

associated with {ex} inthe sense that [&,(, D:f g (t)dt =0 for k#j. Define.

PkH - HY - ,&, [, fork>0.
Now define E(u) as follows
E(u) =0 for 0 (-0, 0),

k
E(u) = Z P, foru 0 (4, Ay, k>0.
J:
E(u) =1foru 0 (27, )
E is now a spectral family on H and is concentrated on [0, 2n]. Note that, in particular, E(\c ) = E(\k-1) = Pk . Let

X = Zok:‘“’ ak exwith {ak } asdefined above. Since this sum convergesin L2 norm, X isagenuine element of H .

Claim
D o /s
Py 1AXIFT = e

uoP: (K=o

o /s
It suffices to show that for each N > 1 there exists a partition uyy PR such that HZ | APRS ||SH >N . Solet
(k== O

/s
b /s
N>1 be given. Since HZ|AKX|SH =00, we can pick Jy such that (Z;N | &, |)1 > N.
== 0
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Let us define uN as follows: let { pk } k<0 be any partition of (-, 0] with po = 0. et Wj = )\j forj=1,..,JN and,
without loss of generality, let pk = 21 for some K > Jy .
Finaly, let {j }j=K beany partition of [2m, o).

Thus, foranyy H,wehaveAgxy=0fork<Oandk> K ,andAky=Pkyfor0<k<JN.Hence

00 JN K JN
> IAXIF= ZJII RYIF+ ZIIAkYIIS 2 Z}II RYIF
e = k=Jy41 =

We now apply thisto y=x and note that P.x=ag, for k>0. Thus we have

o E}/s Iy
DB 203 laIslle Y

I
2 Ma{;lak F} >N

This proves the Claim, and hence the Proposition
Thus we have settled the question of existence of a spectral family on a Hilbert space, which does not arise

from a spectral measure. In fact the above construc tion gives a trigonometrically well bounded operator S =

2r
L_ €*dE(A) with interesting power growth properties.

[I. CONCLUSION

In this paper we studied some theorems on Spectral Measures and Spectral Families
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